
CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 12: Approximation Algorithms

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Why Need Approximation Algorithms?

¡ Many problems are NP-complete, but are too important to give up merely because
obtaining an optimal solution is intractable.

¡ If a problem is NP-complete, we are unlikely to find a polynomial-time algorithm for
solving it exactly, but even so, there may be hope.

1

Why Need Approximation Algorithms?

¡ There are at least three approaches to getting around NP-completeness:
¡ Approach 1: If the actual inputs are small, an algorithm with exponential running time may be

perfectly satisfactory.

¡ Approach 2: We may be able to isolate important special cases that are solvable in polynomial
time.

¡ Approach 3: It may still be possible to find near-optimal solutions in polynomial time (either in the
worst case or on average).

¡ In practice, near-optimality is often good enough. An algorithm that returns near-
optimal solutions is called an approximation algorithm.

2

Approximation Algorithms

¡ For example, if you only have 5 days to prepare final exams for 5 courses, you have two
strategies:
¡ Spend 4 days to make 1 course get A and 1 day to make all the other 4 courses get C.
¡ Evenly spend 5 days to 5 courses to make each course get B.

¡ It is same for engineering, sometimes we don’t have to pursue perfect solution for a problem
due to high cost, because the resource (e.g. hardware, computational time, labour) is
limited.
¡ A relative good result is enough and we can focus on something else such that the total return is

maximized. (GPA for 5 Bs is higher than that of 1 A and 4 Cs).

¡ In economics, it is call profit maximization, which is achieved when marginal revenue equals
marginal cost.

3

Approximation Ratio

¡ The optimization problem may be either a maximization or a minimization problem.

¡ We say that an algorithm for a problem has an approximation ratio of 𝜌(𝑛) if, for any
input of size 𝑛, the cost 𝐶 of the solution produced by the algorithm is within a factor
of 𝜌(𝑛) of the cost 𝐶∗ of an optimal solution:

max(
𝐶
𝐶∗
,
𝐶∗

𝐶
) ≤ 𝜌 𝑛 .

¡ We also call an algorithm that achieves an approximation ratio of 𝜌(𝑛) a 𝜌(𝑛)
approximation algorithm.

4

Approximation Ratio

¡ For a minimization problems, we have 0 < 𝐶∗ ≤ 𝐶.
¡ For a maximization problems, we have 0 < 𝐶 ≤ 𝐶∗.
¡ The approximation ratio of an approximation algorithm is never less than 1.
¡ The smaller the approximation ratio, the better the approximation algorithm.

¡ A 1-approximation algorithm produces an optimal solution.

5

Approximation Algorithms

Now, we look at four problems that can be solved by approximation algorithms:

¡ The vertex-cover problem

¡ The set-covering problem

¡ The travel-salesman problem

¡ MAX-CNF satisfiability problem

6

THE VERTEX-COVER PROBLEM

7

The Vertex-Cover Problem

¡ A vertex cover of an undirected graph 𝐺 = (𝑉, 𝐸) is a subset
𝑉’ ⊆ 𝑉 such that if (𝑢, 𝑣) is an edge of 𝐺, then either 𝑢 ∈ 𝑉’
or 𝑣 ∈ 𝑉’ (or both).

¡ The size of a vertex cover is the number of vertices in it.
¡ The vertex-cover problem is to find a vertex cover of

minimum size in a given undirected graph.
¡ This problem is NP-hard and its corresponding decision

problem is NP-complete.
¡ For the decision problem with parameter 𝑘, a straightforward

solution is to check all subsets 𝑉’ ⊆ 𝑉 of size 𝑘.
¡ The time complexity is |𝑉|! (can’t be bounded by a polynomial

function).

8

Image source: https://en.wikipedia.org/wiki/Vertex_cover

A vertex cover

An minimum vertex cover

https://en.wikipedia.org/wiki/Vertex_cover

Approximation Algorithm for the Vertex-Cover Problem

9

Image source: Figure 35.1, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

The time complexity of this
algorithm is 𝑂(|𝑉| + |𝐸|)

select (b, c), C={b, c}

select (e, f), C={b, c, e, f} select (d, g), C={b, c, e, f, d, g}

Approximation Algorithm for the Vertex-Cover Problem

Theorem 1

approx_vertex_cover is a polynomial-time 2-approximation algorithm.

Proof:

¡ We have already shown that approx_vertex_cover runs in polynomial time.

¡ let 𝐴 denote the set of edges that were picked in the while loop.

¡ An optimal cover 𝐶∗ must include at least one endpoint of each edge in 𝐴, because 𝐶∗ covers
every edge in 𝐴.

¡ No two edges in 𝐴 share an endpoint, since once an edge is picked, all other edges that share
the same endpoints with the picked edge are deleted from 𝐸.

10

Approximation Algorithm for the Vertex-Cover Problem

Proof (cont’d):
¡ Thus, no two edges in 𝐴 are covered by the same vertex in 𝐶∗.
¡ In other words, one vertex in 𝐶∗ can at most cover one edge in 𝐴.

¡ It is possible that two vertex in 𝐶∗ covers one edge in 𝐴.

¡ Therefore, we have the lower bound
𝐶∗ ≥ |𝐴|.

¡ Each edge pick puts two new endpoints in 𝐶, we have:
𝐶 = 2 𝐴
≤ 2 𝐶∗ .

11

THE SET-COVERING PROBLEM

12

The Set-Covering Problem

¡ An instance (𝑋, 𝐹) of the set-covering problem consists of a finite set 𝑋 and a family 𝐹 of
subsets of 𝑋, such that every element of 𝑋 belongs to at least one subset in 𝐹:

𝑋 =*
#∈%

𝑆 .

¡ The problem is to find a minimum number of subsets 𝐶 ⊆ 𝐹 , which include all elements of 𝑋:

𝑋 =#
!∈#

𝑆 .

¡ This problem is NP-hard and its corresponding decision problem is NP-complete.
¡ Similar to the vertex-cover problem, the time-complexity of a brute-force algorithm for the decision

problem is 𝐹 !.

13

The Set-Covering Problem

14
14

¡ 𝑋 consists of 12 black points, and 𝐹 is a family
of subsets of 𝑋.

𝐹: 𝑆), 𝑆*, 𝑆+, 𝑆,, 𝑆-, 𝑆. .

¡ An optimal solution 𝐶∗ ⊆ 𝐹 is:
𝐶∗ = {𝑆+, 𝑆,, 𝑆-}.

¡ A solution produced by the greedy algorithm
𝐶 ⊆ 𝐹 is:

𝐶 = {𝑆), 𝑆+, 𝑆, 𝑆-}.

Approximation Algorithm for the Set-Covering Problem

¡ At each stage, pick the set 𝑆 that covers the greatest
number of remaining elements that are uncovered.

¡ Result: Add to 𝐶 the sets 𝑆", 𝑆#, 𝑆$, 𝑆% in order.

15

Approximation Algorithm for the Set-Covering Problem

¡ The number of iterations of the loop is bounded from
above by min 𝑋 , 𝐹 .
¡ If 𝑋 < 𝐹 , the size of 𝑈 is reduced in each iteration.

Therefore there are at most 𝑋 loops.

¡ If 𝑋 > 𝐹 , we will not repeat selecting the same 𝑆 from 𝐹.
Therefore there are at most 𝐹 loops.

¡ The loop body can be implemented to run in time
𝑂(|𝑋||𝐹|).

¡ Total time complexity: 𝑂(|𝑋||𝐹|min(|𝑋|, |𝐹|)), which is
polynomial in 𝑋 and 𝐹 .

16

Approximation Algorithm for the Set-Covering Problem

Theorem 2
greedy_set_cover is a polynomial-time (ln |𝑋| + 1)-approximation algorithm.

¡ The proof is skiped here due to high complexity.
¡ In this example, the approximation ratio 𝜌(𝑛) is not a constant but a logarithm

function of the size of input 𝑋.
¡ As the size of the instance gets larger, the size of the approximate solution may grow, relative to

the size of an optimal solution.

¡ Because the logarithm function grows rather slowly, however, this approximation algorithm may
nonetheless give useful results.

17

THE TRAVEL-SALESMAN PROBLEM

18

The Travel-Salesman Problem

¡ Given a complete undirected graph 𝐺 = (𝑉, 𝐸) that has a nonnegative integer cost
𝑐(𝑢, 𝑣) associated with each edge (𝑢, 𝑣) ∈ 𝐸, and we must find a Hamiltonian cycle
(i.e. a tour) of 𝐺 with minimum cost.

¡ This problem is NP-hard and its corresponding decision problem is NP-complete.
¡ Worst-case time complexity of dynamic programming solution is Θ 𝑛$2% .

¡ The state space tree in the branch-and-bound algorithm has (𝑛 − 1)! leaves. The worst-case is that
the optimal solution is found on the last leaf, i.e. no node is pruned.

19

The Travel-Salesman Problem

¡ In many practical situations, it is always cheapest to go directly from a place
𝑢 to a place 𝑤; going by way of any intermediate stop 𝑣 can't be less
expensive.
¡ Usually true if the cost is distance you walk.

¡ Sometimes not true if the cost is the flight price.

¡ Reversely, cutting out an intermediate stop never increases the cost.

¡ We formalize this notion by saying that the cost function 𝑐 satisfies the
triangle inequality if for all vertices 𝑢, 𝑣, 𝑤 ∈ 𝑉,

𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤).

20

Approximation Algorithm for the Travel-Salesman Problem

¡ We will first use Prim’s algorithm to compute a minimum spanning tree (MST), whose
weight is a lower bound on the length of an optimal TSP tour.
¡ Recall that the every-case time complexity for Prim’s algorithm is 𝑇(𝑛$).

¡ The optimal cost for TSP must be less than the one for MST (removing any edge from the tour is a
spanning tree).

¡ We will then use the MST to create a tour whose cost is no more than twice that of
the MST's weight, as long as the cost function satisfies the triangle inequality.
¡ Thus, it is a 2-approximation algorithm.

21

Approximation Algorithm for the Travel-Salesman Problem

22

¡ Assume that each two vertices are connected in the
undirected graph.

¡ Actually, Prim’s algorithm doesn’t need to specify the root.
However, here we need a root to do traversal.

¡ Full walk of the tree: a, b, c, b, h, b, a, d, e, f, e, g, e, d, a,
shown in (c).

¡ Preorder walk of the tree: a, b, c, h, d, e, f, g , shown in (d).

Approx. tour Optimal tour

Image source: Figure 35.2, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

Approximation Algorithm for the Travel-Salesman Problem

¡ Now you may ask: what if 𝑐(ℎ, 𝑑) is
super high, can the total cost of this
tour still be at most twice of that of the
optimal tour?

¡ No worry. The triangle inequality helps
us dispel worries.

23

Image source: Figure 35.2, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

Approximation Algorithm for the Travel-Salesman Problem

Theorem 3
approx_tsp_tour is a polynomial-time 2-approximation algorithm for TSP with the triangle inequality.
Proof:
¡ approx_vertex_cover is simply a call to Prim’s algorithm with a preorder traversal, that is obviously

in polynomial time.
¡ Let 𝐻∗ denote an optimal tour for the given set of vertices.
¡ Since we can obtain a spanning tree by deleting any edge from the optimal tour, the cost of the MST 𝑇

must be a lower bound on the cost of an optimal tour, i.e.
𝑐 𝑇 £ 𝑐 𝐻∗ ,

where 𝑐(2) denotes the total cost of the edges in the tree/tour.

24

Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):

¡ Since the full walk of 𝑇 (let us call this walk 𝑊) traverses every
edge of 𝑇 exactly twice, we have

𝑐 𝑊 = 2𝑐 𝑇 .

¡ Hence, we have
𝑐 𝑊 ≤ 2𝑐 𝐻∗ .

¡ That is, the cost of 𝑊 is within a factor of 2 of the cost of an
optimal tour.

25

Image source: Figure 35.2, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

Full walk 𝑊 of 𝑇

Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):
¡ However, you may notice that a very important problem: 𝑊 is generally not a

tour.
¡ It visits each internal nodes twice in 𝑇.

¡ By the triangle inequality, we can delete a visit to any vertex from 𝑊 and the cost
does not increases.
¡ If a vertex 𝑣 is deleted from 𝑊 between visits to 𝑢 and 𝑤, the resulting ordering specifies

going directly from 𝑢 to 𝑤.

¡ By repeatedly applying this operation, we can remove from 𝑊 all but the first
visit to each vertex, i.e. we obtain the preorder walk of the tree finally.
¡ a, b, c, b, h, b, a, d, e, f, e, g, e, d, a.

26

The Hamiltonian cycle 𝐻
generated by full walk 𝑊

Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):

¡ Since 𝐻 is obtained by deleting vertices from the full walk 𝑊, we have
𝑐(𝐻) ≤ 𝑐(𝑊).

¡ We therefore have:
𝑐(𝐻) ≤ 2𝑐(𝐻∗).

¡ That is, the theorem is proved.

27

MAX-CNF SATISFIABILITY PROBLEM

28

Randomized Approximation Algorithm

¡ Just as there are randomized algorithms that compute exact solutions, there are randomized
algorithms that compute approximate solutions.

¡ We say that a randomized algorithm for a problem has an approximation ratio of 𝜌(𝑛) if, for
any input of size 𝑛, the expected cost 𝐸[𝐶] of the solution produced by the randomized
algorithm is within a factor of 𝜌(𝑛) of the cost 𝐶∗ of an optimal solution:

max(
𝐸[𝐶]
𝐶∗ ,

𝐶∗

𝐸[𝐶]) ≤ 𝜌 𝑛 .

¡ We call this kind of algorithm randomized 𝜌(𝑛)-approximation algorithm.
¡ It is like a deterministic approximation algorithm, except that the approximation ratio is for an expected

value.

29

MAX-CNF Satisfiability Problem

¡ The input consists of 𝑛 Boolean variables 𝑥', … , 𝑥%, each of which may be set to either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒.

¡ m clauses 𝐶', … , 𝐶(, each of which consists of an “OR” operator of some number of the variables and
their negations

¡ For example, 𝑥) ∨ ¬𝑥* ∨ 𝑥'', where ¬𝑥+ is the negation of 𝑥+.

¡ A nonnegative weight 𝑤, for each clause 𝐶,.

¡ The objective of the problem is to find an assignment of 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒 to the 𝑥+ that maximizes the
total weights of the satisfied clauses.

30

MAX-CNF Satisfiability Problem

¡ For example, we have:
¡ 𝐶': 𝑥' ∨ ¬𝑥$ with 𝑤, = 1.

¡ 𝐶$: 𝑥' ∨ 𝑥$ with 𝑤, = 2.

¡ 𝐶):¬𝑥' ∨ ¬𝑥$ with 𝑤, = 3.

¡ 𝐶-:¬𝑥' ∨ 𝑥$ with 𝑤, = 4.

¡ The optimal solution is 𝑥) = 𝑓𝑎𝑙𝑠𝑒, 𝑥* = 𝑡𝑟𝑢𝑒 with total weight 9.

31

Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

¡ Now, we have an extremely simple randomized algorithm:

Set each 𝑥1 to 𝑡𝑟𝑢𝑒 independently with probability 1/2.

¡ And we have the following theorem:

Theorem 4

The randomized algorithm gives a randomized 2-approximation algorithm for the
maximum satisfiability problem.

32

Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Proof:
¡ Consider a random variable 𝑌, such that 𝑌, is 1 if clause C, is satisfied and 0 otherwise.

¡ Let 𝑊 = ∑,.'(𝑤, 𝑌, be a random variable that is equal to the total weight of the satisfied clauses.

¡ Then, recall the lemma for probabilistic analysis: 𝐸 𝑌, = 𝑃𝑟 clause 𝐶, satistied .

𝐸 𝑊 =3
!"#

$

𝑤!𝐸 𝑌! =3
!"#

$

𝑤!𝑃𝑟 clause 𝐶! satistied .

¡ For each clause 𝐶&, the probability that it is not satisfied is the probability of when
¡ each unnegated literal in 𝐶(is set to 𝑓𝑎𝑙𝑠𝑒;
¡ each negated literal in 𝐶(is set to 𝑡𝑟𝑢𝑒.

33

Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Proof (cont’d):

¡ Because each of which happens with probability 1/2 independently, we have:

𝑃𝑟 clause 𝐶! satistied = 1 −
1
2

%!
≥
1
2 ,

where 𝑙& ≥ 1 the size of clause 𝑗.
¡ Let 𝑂𝑃𝑇 denote the optimum value of the MAX-CNF instance:

𝐸 𝑊 =3
!"#

$

𝑤!𝑃𝑟 clause 𝐶! satistied ≥
1
23
!"#

$

𝑤! ≥
1
2𝑂𝑃𝑇,

because the sum over all 𝑤& is the upper bound of 𝑂𝑃𝑇.

34

Conclusion

After this lecture, you should know:
¡ Why do we need approximation algorithms.

¡ How to measure the gap between an approximate solution and an optimal solution.

¡ How to get a polynomial-time approximation algorithm and prove its approximation ratio 𝜌(𝑛).

35

Assignment

¡ No tutorial this week.

¡ Assignment 6 is released. The deadline is 18:00, 13th July.

36

Thank you!

Reference:

¡ Chapter 35, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

37

