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Why Need Approximation Algorithms?

¡ Many problems are NP-complete, but are too important to give up merely because 
obtaining an optimal solution is intractable.

¡ If a problem is NP-complete, we are unlikely to find a polynomial-time algorithm for 
solving it exactly, but even so, there may be hope.
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Why Need Approximation Algorithms?

¡ There are at least three approaches to getting around NP-completeness:
¡ Approach 1: If the actual inputs are small, an algorithm with exponential running time may be 

perfectly satisfactory.

¡ Approach 2: We may be able to isolate important special cases that are solvable in polynomial 
time.

¡ Approach 3: It may still be possible to find near-optimal solutions in polynomial time (either in the 
worst case or on average). 

¡ In practice, near-optimality is often good enough. An algorithm that returns near-
optimal solutions is called an approximation algorithm. 
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Approximation Algorithms

¡ For example, if you only have 5 days to prepare final exams for 5 courses, you have two 
strategies:
¡ Spend 4 days to make 1 course get A and 1 day to make all the other 4 courses get C.
¡ Evenly spend 5 days to 5 courses to make each course get B.

¡ It is same for engineering, sometimes we don’t have to pursue perfect solution for a problem 
due to high cost, because the resource (e.g. hardware, computational time, labour) is 
limited.
¡ A relative good result is enough and we can focus on something else such that the total return is 

maximized. (GPA for 5 Bs is higher than that of 1 A and 4 Cs).

¡ In economics, it is call profit maximization, which is achieved when marginal revenue equals 
marginal cost.

3



Approximation Ratio

¡ The optimization problem may be either a maximization or a minimization problem. 

¡ We say that an algorithm for a problem has an approximation ratio of 𝜌(𝑛) if, for any
input of size 𝑛, the cost 𝐶 of the solution produced by the algorithm is within a factor 
of 𝜌(𝑛) of the cost 𝐶∗ of an optimal solution: 

max(
𝐶
𝐶∗
,
𝐶∗

𝐶
) ≤ 𝜌 𝑛 .

¡ We also call an algorithm that achieves an approximation ratio of 𝜌(𝑛) a 𝜌(𝑛)
approximation algorithm. 
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Approximation Ratio

¡ For a minimization problems, we have 0 < 𝐶∗ ≤ 𝐶.
¡ For a maximization problems, we have 0 < 𝐶 ≤ 𝐶∗.
¡ The approximation ratio of an approximation algorithm is never less than 1. 
¡ The smaller the approximation ratio, the better the approximation algorithm.

¡ A 1-approximation algorithm produces an optimal solution.
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Approximation Algorithms

Now, we look at four problems that can be solved by approximation algorithms:

¡ The vertex-cover problem

¡ The set-covering problem

¡ The travel-salesman problem

¡ MAX-CNF satisfiability problem
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THE VERTEX-COVER PROBLEM
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The Vertex-Cover Problem

¡ A vertex cover of an undirected graph 𝐺 = (𝑉, 𝐸) is a subset 
𝑉’ ⊆ 𝑉 such that if (𝑢, 𝑣) is an edge of 𝐺, then either 𝑢 ∈ 𝑉’
or 𝑣 ∈ 𝑉’ (or both). 

¡ The size of a vertex cover is the number of vertices in it.
¡ The vertex-cover problem is to find a vertex cover of 

minimum size in a given undirected graph.
¡ This problem is NP-hard and its corresponding decision 

problem is NP-complete. 
¡ For the decision problem with parameter 𝑘, a straightforward 

solution is to check all subsets 𝑉’ ⊆ 𝑉 of size 𝑘.
¡ The time complexity is |𝑉|! (can’t be bounded by a polynomial 

function).
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Image source: https://en.wikipedia.org/wiki/Vertex_cover

A vertex cover

An minimum vertex cover

https://en.wikipedia.org/wiki/Vertex_cover


Approximation Algorithm for the Vertex-Cover Problem
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Image source: Figure 35.1, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

The time complexity of this 
algorithm is 𝑂(|𝑉| + |𝐸|)

select (b, c), C={b, c}

select (e, f), C={b, c, e, f} select (d, g), C={b, c, e, f, d, g}



Approximation Algorithm for the Vertex-Cover Problem

Theorem 1

approx_vertex_cover is a polynomial-time 2-approximation algorithm.

Proof:

¡ We have already shown that approx_vertex_cover runs in polynomial time. 

¡ let 𝐴 denote the set of edges that were picked in the while loop. 

¡ An optimal cover 𝐶∗ must include at least one endpoint of each edge in 𝐴, because 𝐶∗ covers 
every edge in 𝐴.

¡ No two edges in 𝐴 share an endpoint, since once an edge is picked, all other edges that share
the same endpoints with the picked edge are deleted from 𝐸. 
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Approximation Algorithm for the Vertex-Cover Problem

Proof (cont’d):
¡ Thus, no two edges in 𝐴 are covered by the same vertex in 𝐶∗. 
¡ In other words, one vertex in 𝐶∗ can at most cover one edge in 𝐴.

¡ It is possible that two vertex in 𝐶∗ covers one edge in 𝐴.

¡ Therefore, we have the lower bound
𝐶∗ ≥ |𝐴|.

¡ Each edge pick puts two new endpoints in 𝐶, we have: 
𝐶 = 2 𝐴
≤ 2 𝐶∗ .
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THE SET-COVERING PROBLEM
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The Set-Covering Problem

¡ An instance (𝑋, 𝐹) of the set-covering problem consists of a finite set 𝑋 and a family 𝐹 of 
subsets of 𝑋, such that every element of 𝑋 belongs to at least one subset in 𝐹:

𝑋 =*
#∈%

𝑆 .

¡ The problem is to find a minimum number of subsets 𝐶 ⊆ 𝐹 , which include all elements of 𝑋:

𝑋 =#
!∈#

𝑆 .

¡ This problem is NP-hard and its corresponding decision problem is NP-complete. 
¡ Similar to the vertex-cover problem, the time-complexity of a brute-force algorithm for the decision 

problem is 𝐹 !.
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The Set-Covering Problem
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¡ 𝑋 consists of 12 black points, and 𝐹 is a family
of subsets of 𝑋.

𝐹: 𝑆), 𝑆*, 𝑆+, 𝑆,, 𝑆-, 𝑆. .

¡ An optimal solution 𝐶∗ ⊆ 𝐹 is:
𝐶∗ = {𝑆+, 𝑆,, 𝑆-}.

¡ A solution produced by the greedy algorithm
𝐶 ⊆ 𝐹 is:

𝐶 = {𝑆), 𝑆+, 𝑆, 𝑆-}.



Approximation Algorithm for the Set-Covering Problem

¡ At each stage, pick the set 𝑆 that covers the greatest 
number of remaining elements that are uncovered.

¡ Result: Add to 𝐶 the sets 𝑆", 𝑆#, 𝑆$, 𝑆% in order.
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Approximation Algorithm for the Set-Covering Problem

¡ The number of iterations of the loop is bounded from 
above by min 𝑋 , 𝐹 .
¡ If 𝑋 < 𝐹 , the size of 𝑈 is reduced in each iteration. 

Therefore there are at most 𝑋 loops.

¡ If 𝑋 > 𝐹 , we will not repeat selecting the same 𝑆 from 𝐹. 
Therefore there are at most 𝐹 loops.

¡ The loop body can be implemented to run in time 
𝑂(|𝑋||𝐹|).

¡ Total time complexity: 𝑂(|𝑋||𝐹|min(|𝑋|, |𝐹|)), which is 
polynomial in 𝑋 and 𝐹 .
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Approximation Algorithm for the Set-Covering Problem

Theorem 2
greedy_set_cover is a polynomial-time (ln |𝑋| + 1)-approximation algorithm. 

¡ The proof is skiped here due to high complexity.
¡ In this example, the approximation ratio 𝜌(𝑛) is not a constant but a logarithm 

function of the size of input 𝑋. 
¡ As the size of the instance gets larger, the size of the approximate solution may grow, relative to 

the size of an optimal solution. 

¡ Because the logarithm function grows rather slowly, however, this approximation algorithm may 
nonetheless give useful results. 
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THE TRAVEL-SALESMAN PROBLEM
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The Travel-Salesman Problem

¡ Given a complete undirected graph 𝐺 = (𝑉, 𝐸) that has a nonnegative integer cost 
𝑐(𝑢, 𝑣) associated with each edge (𝑢, 𝑣) ∈ 𝐸, and we must find a Hamiltonian cycle 
(i.e. a tour) of 𝐺 with minimum cost.

¡ This problem is NP-hard and its corresponding decision problem is NP-complete. 
¡ Worst-case time complexity of dynamic programming solution is Θ 𝑛$2% .

¡ The state space tree in the branch-and-bound algorithm has (𝑛 − 1)! leaves. The worst-case is that 
the optimal solution is found on the last leaf, i.e. no node is pruned.
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The Travel-Salesman Problem

¡ In many practical situations, it is always cheapest to go directly from a place 
𝑢 to a place 𝑤; going by way of any intermediate stop 𝑣 can't be less 
expensive.
¡ Usually true if the cost is distance you walk.

¡ Sometimes not true if the cost is the flight price.

¡ Reversely, cutting out an intermediate stop never increases the cost. 

¡ We formalize this notion by saying that the cost function 𝑐 satisfies the 
triangle inequality if for all vertices 𝑢, 𝑣, 𝑤 ∈ 𝑉, 

𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤).
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Approximation Algorithm for the Travel-Salesman Problem

¡ We will first use Prim’s algorithm to compute a minimum spanning tree (MST), whose 
weight is a lower bound on the length of an optimal TSP tour.
¡ Recall that the every-case time complexity for Prim’s algorithm is 𝑇(𝑛$).

¡ The optimal cost for TSP must be less than the one for MST (removing any edge from the tour is a 
spanning tree).

¡ We will then use the MST to create a tour whose cost is no more than twice that of 
the MST's weight, as long as the cost function satisfies the triangle inequality. 
¡ Thus, it is a 2-approximation algorithm.
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Approximation Algorithm for the Travel-Salesman Problem
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¡ Assume that each two vertices are connected in the 
undirected graph.

¡ Actually, Prim’s algorithm doesn’t need to specify the root. 
However, here we need a root to do traversal.

¡ Full walk of the tree: a, b, c, b, h, b, a, d, e, f, e, g, e, d, a, 
shown in (c).

¡ Preorder walk of the tree: a, b, c, h, d, e, f, g , shown in (d).

Approx. tour Optimal tour

Image source: Figure 35.2, Thomas H. Cormen, Introduction to Algorithms, Second Edition.



Approximation Algorithm for the Travel-Salesman Problem

¡ Now you may ask: what if 𝑐(ℎ, 𝑑) is 
super high, can the total cost of this 
tour still be at most twice of that of the 
optimal tour?

¡ No worry. The triangle inequality helps 
us dispel worries.
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Image source: Figure 35.2, Thomas H. Cormen, Introduction to Algorithms, Second Edition.



Approximation Algorithm for the Travel-Salesman Problem

Theorem 3
approx_tsp_tour is a polynomial-time 2-approximation algorithm for TSP with the triangle inequality.
Proof:
¡ approx_vertex_cover is simply a call to Prim’s algorithm with a preorder traversal, that is obviously 

in polynomial time.
¡ Let 𝐻∗ denote an optimal tour for the given set of vertices.
¡ Since we can obtain a spanning tree by deleting any edge from the optimal tour, the cost of the MST 𝑇

must be a lower bound on the cost of an optimal tour, i.e.                 
𝑐 𝑇 £ 𝑐 𝐻∗ ,

where 𝑐(2) denotes the total cost of the edges in the tree/tour.
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Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):

¡ Since the full walk of 𝑇 (let us call this walk 𝑊) traverses every 
edge of 𝑇 exactly twice, we have

𝑐 𝑊 = 2𝑐 𝑇 .

¡ Hence, we have
𝑐 𝑊 ≤ 2𝑐 𝐻∗ .

¡ That is, the cost of 𝑊 is within a factor of 2 of the cost of an 
optimal tour.
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Image source: Figure 35.2, Thomas H. Cormen, Introduction to Algorithms, Second Edition.

Full walk 𝑊 of 𝑇



Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):
¡ However, you may notice that a very important problem: 𝑊 is generally not a 

tour.
¡ It visits each internal nodes twice in 𝑇.

¡ By the triangle inequality, we can delete a visit to any vertex from 𝑊 and the cost 
does not increases.
¡ If a vertex 𝑣 is deleted from 𝑊 between visits to 𝑢 and 𝑤, the resulting ordering specifies 

going directly from 𝑢 to 𝑤.

¡ By repeatedly applying this operation, we can remove from 𝑊 all but the first 
visit to each vertex, i.e. we obtain the preorder walk of the tree finally.
¡ a, b, c, b, h, b, a, d, e, f, e, g, e, d, a.
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The Hamiltonian cycle 𝐻
generated by full walk 𝑊



Approximation Algorithm for the Travel-Salesman Problem

Proof (cont’d):

¡ Since 𝐻 is obtained by deleting vertices from the full walk 𝑊, we have
𝑐(𝐻) ≤ 𝑐(𝑊).

¡ We therefore have:  
𝑐(𝐻) ≤ 2𝑐(𝐻∗).

¡ That is, the theorem is proved.
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MAX-CNF SATISFIABILITY PROBLEM
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Randomized Approximation Algorithm

¡ Just as there are randomized algorithms that compute exact solutions, there are randomized 
algorithms that compute approximate solutions. 

¡ We say that a randomized algorithm for a problem has an approximation ratio of 𝜌(𝑛) if, for 
any input of size 𝑛, the expected cost 𝐸[𝐶] of the solution produced by the randomized 
algorithm is within a factor of 𝜌(𝑛) of the cost 𝐶∗ of an optimal solution: 

max(
𝐸[𝐶]
𝐶∗ ,

𝐶∗

𝐸[𝐶]) ≤ 𝜌 𝑛 .

¡ We call this kind of algorithm randomized 𝜌(𝑛)-approximation algorithm. 
¡ It is like a deterministic approximation algorithm, except that the approximation ratio is for an expected 

value. 
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MAX-CNF Satisfiability Problem

¡ The input consists of 𝑛 Boolean variables 𝑥', … , 𝑥%, each of which may be set to either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒.

¡ m clauses 𝐶', … , 𝐶(, each of which consists of an “OR” operator of some number of the variables and 
their negations

¡ For example, 𝑥) ∨ ¬𝑥* ∨ 𝑥'', where ¬𝑥+ is the negation of 𝑥+.

¡ A nonnegative weight 𝑤, for each clause 𝐶,. 

¡ The objective of the problem is to find an assignment of 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒 to the 𝑥+ that maximizes the 
total weights of the satisfied clauses. 
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MAX-CNF Satisfiability Problem

¡ For example, we have:
¡ 𝐶': 𝑥' ∨ ¬𝑥$ with 𝑤, = 1.

¡ 𝐶$: 𝑥' ∨ 𝑥$ with 𝑤, = 2.

¡ 𝐶):¬𝑥' ∨ ¬𝑥$ with 𝑤, = 3.

¡ 𝐶-:¬𝑥' ∨ 𝑥$ with 𝑤, = 4.

¡ The optimal solution is 𝑥) = 𝑓𝑎𝑙𝑠𝑒, 𝑥* = 𝑡𝑟𝑢𝑒 with total weight 9.
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Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

¡ Now, we have an extremely simple randomized algorithm: 

Set each 𝑥1 to 𝑡𝑟𝑢𝑒 independently with probability 1/2.

¡ And we have the following theorem:

Theorem 4

The randomized algorithm gives a randomized 2-approximation algorithm for the 
maximum satisfiability problem. 
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Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Proof:
¡ Consider a random variable 𝑌, such that 𝑌, is 1 if clause C, is satisfied and 0 otherwise. 

¡ Let 𝑊 = ∑,.'( 𝑤, 𝑌, be a random variable that is equal to the total weight of the satisfied clauses.

¡ Then, recall the lemma for probabilistic analysis: 𝐸 𝑌, = 𝑃𝑟 clause 𝐶, satistied .

𝐸 𝑊 =3
!"#

$

𝑤!𝐸 𝑌! =3
!"#

$

𝑤!𝑃𝑟 clause 𝐶! satistied .

¡ For each clause 𝐶&, the probability that it is not satisfied is the probability of when 
¡ each unnegated literal in 𝐶( is set to 𝑓𝑎𝑙𝑠𝑒;
¡ each negated literal in 𝐶( is set to 𝑡𝑟𝑢𝑒.
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Randomized Approximation Algorithm for MAX-CNF Satisfiability Problem

Proof (cont’d):

¡ Because each of which happens with probability 1/2 independently, we have:

𝑃𝑟 clause 𝐶! satistied = 1 −
1
2

%!
≥
1
2 ,

where 𝑙& ≥ 1 the size of clause 𝑗. 
¡ Let 𝑂𝑃𝑇 denote the optimum value of the MAX-CNF instance:

𝐸 𝑊 =3
!"#

$

𝑤!𝑃𝑟 clause 𝐶! satistied ≥
1
23
!"#

$

𝑤! ≥
1
2𝑂𝑃𝑇,

because the sum over all 𝑤& is the upper bound of 𝑂𝑃𝑇.
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Conclusion

After this lecture, you should know:
¡ Why do we need approximation algorithms.

¡ How to measure the gap between an approximate solution and an optimal solution.

¡ How to get a polynomial-time approximation algorithm and prove its approximation ratio 𝜌(𝑛). 
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Assignment

¡ No tutorial this week. 

¡ Assignment 6 is released. The deadline is 18:00, 13th July.
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Thank you!

Reference:

¡ Chapter 35, Thomas H. Cormen, Introduction to Algorithms, Second Edition.
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